class lima2.client.Pipeline

A base class for all processing pipelines.

Public members

BYPRODUCT_CACHE_LIMIT = 500

Maximum number of cached entries for each processing by-product.

params_schema

A decorator to create a class property from a class method.

params_default

A decorator to create a class property from a class method.

classmethod fetch_params_schema()

Fetch proc_params schema from the server.

classmethod __init_subclass__()

Initialize a pipeline subclass.

Pipeline(uuid, proc_devs, topology_kind, timeout)

Construct a Pipeline object.

property uuid

Return the UUID of the pipeline

property input_frame_info

Return the dtype and shape of the input frame for each receivers

property processed_frame_info

Return the dtype and shape of the processed frame for each receivers

get_frame(frame_idx, source='frame')

Get and decode frame by index given source specifier.

cache_byproduct(key, data)

Store data into self.byproduct_cache[key].

get_cached_byproduct(key, default)
property nb_roi_statistics : ProgressCounter

Get the number of roi statistics fetchable by pop_roi_statistics.

pop_roi_statistics()

Fetch new roi statistics from the server, return them listed by roi index.

property nb_roi_profiles : ProgressCounter

Get the number of roi profiles fetchable by pop_roi_profiles().

pop_roi_profiles(roi_lengths)

Fetch new roi profiles from the server, return them listed by roi index.

property progress_counters : dict[str, ProgressCounter]

Get the list of aggregated progress counters

ping()

Ping all the devices of the system.

property is_finished

A list of is_finished for each devices.

register_on_finished(on_finished)

Register a callback function to be notified when all pipelines are finished.

property last_error

A list of last_error for each devices.

register_on_error(cbk)

Register a callback function to be notified on pipeline error

__repr__()

Return repr(self).

FRAME_SOURCES : dict[str, FrameSource]

Map of available frame source names to a corresponding FrameSource descriptor.

tango_class : str

Class name as defined on server side.

byproduct_cache : dict[str, ndarray]

Local cache of processing byproducts.